Showing 1 results for Transformer Diagnostics.
Ali Esmaeilvandi, Mohammad Hamed Samimi, Amir Abbas Shayegani Akmal,
Volume 22, Issue 1 (3-2026)
Abstract
This paper introduces an improved multi-conductor transmission line (MTL) model for transformers' high-frequency transient and frequency response analysis, overcoming limitations in traditional models that fail to capture complex electromagnetic interactions during high-frequency events, such as lightning strikes and switching operations. The model accurately reflects real-world transformer behaviors under transient conditions by integrating particle swarm optimization (PSO) for efficient parameter estimation and incorporating frequency-dependent losses. The combined use of PSCAD and Python minimizes computational overhead, enabling high-fidelity simulations closely aligned with experimental transformer data. Validation against real transformer measurements demonstrates the model’s reliability in capturing high-frequency responses, essential for transformer diagnostics. This novel approach offers a practical tool for studying transformer frequency response analysis, which is an important tool in transformer diagnosis.