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Torque Ripple Mitigation and Fault-Tolerant Operation of  
Modular Twelve-Phase PMSM Drive using Model-Free 
Predictive Control 
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Abstract: In electric propulsion systems for high-power applications, multi-phase 
Permanent Magnet Synchronous Motors (PMSMs) are highly advantageous due to their 
fast dynamic response and high reliability. This study investigates a twelve-phase 
PMSM with double stator windings, where each winding is powered by a single-phase 
H-bridge inverter. The control of both H-bridge inverters for each phase is managed by a 
dedicated microcontroller. Given the independence of the control systems 
(microcontrollers) and the absence of data exchange between them, the modeling is 
conducted in the 12-phase stationary reference frame. To address non-sinusoidal back-
EMF phase voltages and mitigate torque ripple, a harmonic current injection method is 
independently applied to each phase. A model-free predictive current and speed 
controller (MFPCSC), based on an ultra-local model, is employed, replacing 
conventional PI or hysteresis current controllers. Additionally, extended state observers 
(ESOs) are designed to estimate uncertainties and parameter mismatches. Under fault 
conditions, a fault-tolerant control strategy is implemented, where the current angle of 
healthy windings is adjusted to suppress the second harmonic in the remaining healthy 
windings, thereby reducing torque ripple. The effectiveness of the proposed control 
methods is validated through simulations, both under normal operating conditions and 
various fault scenarios.  

Keywords: PMSM Drive, 12-phase double winding, H-bridge inverter, reliability, 
model-free predictive control, fault-tolerant control. 

 

1  Introduction 

n electric drives used for special applications, high 
reliability is a critical design requirement. To 

achieve this, suitable motors, qualified components, and 
robust hardware and software are essential. For instance, 
hardware design strategies may include redundancy 
measures such as increasing the number of motor 
phases, adding extra switches, using independent single-
phase inverters (e.g., H-bridge for each phase), 
redundant control systems and microcontrollers, and 
redundant sensors. Additionally, fault-tolerant control 
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(FTC) methods enable the drive to continue operating 
without significant disruption in the event of a failure 
[1]. Permanent magnet synchronous motors (PMSMs) 
are particularly attractive for electric drives due to their 
high power and torque density, smooth torque output, 
high efficiency, and reliability. However, despite the 
inherent reliability of three-phase PMSMs with star-
connected windings, a fault in one inverter switch or 
winding can cause the motor to stop producing torque. 
To enhance reliability—especially in high-power 
applications—multi-phase PMSMs are increasingly used 
in vessels and submarine vehicles. Increasing the 
number of phases reduces the phase current, mitigating 
motor losses and cooling challenges [2].  

For low- to medium-power applications, three-phase 
PMSMs with double-star windings (asymmetric six-
phase) are common, while twelve-phase PMSMs are 
preferred for high-power applications. Multi-phase 
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PMSMs can be categorized into two types: symmetrical 
and asymmetrical. Symmetrical multi-phase PMSMs, 
such as five-phase and seven-phase motors, typically 
have an odd number of phases. Asymmetrical multi-
phase PMSMs, on the other hand, consist of multiple 
sets of three-phase windings (e.g., six-phase or twelve-
phase). In asymmetrical PMSMs with N sets (N = 2, 3, 
...) of three-phase windings, the angle (β) between 
identical windings in different sets is “π/3N”. These 
motors offer higher reliability than symmetrical multi-
phase PMSMs, as each three-phase set can be powered 
by an independent three-phase inverter. Fig. 1(a) 
illustrates a twelve-phase PMSM with individual single-
phase inverters [3]. Fig. 1(b) shows a twelve-phase 
PMSM with four three-phase windings (each with a 
separate star point) powered by four independent three-
phase inverters. Scheme (b) is the traditional drive 
design for a twelve-phase PMSM, that the motor has 
four symmetrical three-phase winding sets, with the 
corresponding windings in the three different phases 
having a spatial distance of 15 degrees. Fig. 2 shows the 
schematic of the drive system of twelve-phase PMSM 
[4] of Scheme (b). Fig. 1(a) has the highest level of 
reliability because, each phase of the motor is powered 
separately from an independent single-phase H-bridge 
inverter, and in the event of a fault in one winding or in 
one H-bridge inverter, the remaining 11 phases of the 
motor continue to develop torque [6]. This topology is 
designed and implemented in a modular manner. The 
features of this design include the high number of 
switches, which is 48, which is twice the number of 
switches in Fig 2. 

 
Fig 1.Common types of electrical drives for 12-phase PMSM 

[3] 

To enhance the performance of a PMSM drive under 
fault conditions, it is essential to first identify the source 
and location of the fault and then apply an appropriate 
control strategy [5]. Drive faults can be broadly 
classified into two categories: mechanical faults and 
electrical faults. Electrical faults account for more than 
90% of drive failures, making fault-tolerant control 
primarily focused on addressing these faults. Electrical 
faults can be further categorized into five types: Inverter 
faults, Stator faults, Sensor faults, Control system faults, 
and Magnet demagnetization faults. 

 
Fig 2.Circuit diagram of a twelve-phase PMSM driven by four 

separate three-phase inverters [4] 

Among these, inverter faults are the most common [6]. 
Fault-tolerant control in PMSM drives typically employs 
a combination of software and hardware methods. The 
software approach involves modifying the control 
strategy after a fault occurs, while the hardware 
approach usually entails using a fault-tolerant inverter 
topology instead of a conventional inverter to ensure 
uninterrupted operation. Ideally, integrating both 
methods yields the most effective fault-tolerant control 
solution. 

This work utilizes a modular topology (similar to Fig. 
1(a)) with the highest reliability. The system consists of 
a twelve-phase PMSM with double windings, where 
each motor phase is split into two windings producing 
the same magnetomotive force (MMF). As illustrated in 
Fig. 3, the phase windings are distributed at 15-degree 
intervals. 

 
Fig 3.Stator winding configuration of a 12-phase PMSM with 

dual windings 

 Each half of a phase winding is placed 180 degrees 
apart on the stator circumference, ensuring exact 
alignment between the two halves. Notably, this motor 
employs 24 independent single-phase H-bridge inverters 
with a total of 96 switches, controlled by 12 separate 
microcontrollers. Fig. 4 depicts the modular drive 
schematic for the double-winding, twelve-phase PMSM, 
where each half-winding is powered by a dedicated H-



Iranian Journal of Electrical & Electronic Engineering, Vol. 22, No. 01, March 2026     3 
 

bridge inverter. The two inverters corresponding to a 
single phase are commended by a local microcontroller, 
which operates independently without data exchange 
with other controllers. A central microcontroller 
provides the phase current reference. Due to the 
complete independence of the microcontrollers, 
conventional modeling, estimation, and control methods 
based on multiple dq-reference frame theory are not 
applicable in this configuration. 

 
Fig 4.Schematic diagram of the modular drive system for the 

twelve-phase PMSM with dual windings proposed in this study 

2 Modeling of modular twelve-phase PMSM motor with 
double winding 

Sinusoidal three-phase PMSMs are typically modeled 
in the two-axis dq rotating reference frame and 
controlled using field-oriented control (FOC). Similarly, 
for twelve-phase PMSMs, three primary modeling 
approaches exist: 

1. Separate Modeling of Four Three-Phase Groups – 
Each group is modeled in its own dq reference 
frame [7]. 

2. Decoupled Modeling of Four Three-Phase Groups 
– The groups are decoupled but modeled in a 
single dq reference frame [8]. 

3. Vector Space Decomposition (VSD) Modeling – A 
more generalized approach that decomposes 
harmonics [9]. 

However, the modular drive system used in this study 
(Fig. 4) employs local microcontrollers for each phase 
group, which operate independently without 
intercommunication. Consequently, dq-based modeling 
methods (such as Park transformations) are unsuitable. 
Additionally, if the PMSM's back-EMF contains non-
sinusoidal harmonics, Park transformations fail to 
accurately represent motor behavior. Several alternative 
modeling methods for non-sinusoidal PMSMs have been 
proposed: 

1. Extended Park Transform [10] 
2. dq Modeling with Harmonic Compensation [11] 

3. Multiple Rotating Frame (MRF) Modeling [12] 
4. Vector Space Decomposition (VSD) [13] 
While these methods are effective for three-phase 

PMSMs, they impose a high computational burden—
especially when scaled to twelve-phase systems. Among 
them, VSD is the most suitable for non-sinusoidal 
twelve-phase PMSMs. However, VSD and other dq-
based methods require a centralized controller, whereas 
the modular drive system in this study distributes control 
across local microcontrollers. Since these 
microcontrollers cannot perform 3-to-2 transformations 
(or vice versa), dq-frame modeling is infeasible. For a 
twelve-phase PMSM with non-sinusoidal back-EMF and 
modular control, modeling must instead be performed in 
a twelve-axis stationary reference frame, where adjacent 
windings are spaced 15 electrical degrees apart (Fig. 3). 

This approach is viable for surface-mounted PMSMs, 
where self- and mutual inductances remain constant. 
Assuming the phase winding arrangement in Fig. 3, the 
voltage-current relationship for each winding follows: 

(1) 𝑣𝑣𝑥𝑥 = 𝑅𝑅𝑠𝑠𝑖𝑖𝑥𝑥 +
𝑑𝑑
𝑑𝑑𝑑𝑑
𝜓𝜓𝑥𝑥 + 𝑒𝑒𝑥𝑥 

where, 𝑅𝑅𝑠𝑠 is the resistance of each winding, and 𝑣𝑣𝑥𝑥, 𝑖𝑖𝑥𝑥, 
𝜓𝜓𝑥𝑥 and 𝑒𝑒𝑥𝑥 represent  the voltage, current, flux linkage 
and back-EMF voltage due to the rotor flux of the xth 
winding, respectively, that 𝑥𝑥 = 𝐴𝐴1,𝐴𝐴2,𝐵𝐵1,𝐵𝐵2, … , 𝐿𝐿2. The 
flux linkage of each winding depends on its own current 
as well as the current of the other 23 windings, and can 
be calculated as follows: 

(2) 
𝜓𝜓𝑥𝑥 = 𝐿𝐿𝑥𝑥𝑖𝑖𝑥𝑥 + � 𝑀𝑀𝑥𝑥𝑥𝑥𝑖𝑖𝑦𝑦

𝑦𝑦=𝐴𝐴1,𝐴𝐴2,𝐵𝐵1,𝐵𝐵2,…,𝐿𝐿2
(𝑥𝑥≠𝑦𝑦)

 

Here, 𝐿𝐿𝑥𝑥 is the self-inductance of winding x and 𝑀𝑀𝑥𝑥𝑥𝑥 is 
the mutual inductance between the windings x and y. 
The electromagnetic torque (𝑇𝑇𝑒𝑒) and the mechanical 
speed (𝜔𝜔𝑚𝑚) of the double twelve-phase motor can be 
calculated using the following relations: 

(3) 𝑇𝑇𝑒𝑒 = �
𝑒𝑒𝑥𝑥𝑖𝑖𝑥𝑥
𝜔𝜔𝑟𝑟𝑥𝑥=𝐴𝐴1,…,𝐿𝐿2

 

(4) 𝜔𝜔𝑚𝑚 =
1
𝐽𝐽
�(𝑇𝑇𝑒𝑒 − 𝐵𝐵𝜔𝜔𝑚𝑚 − 𝑇𝑇𝐿𝐿)𝑑𝑑𝑑𝑑 

 
where, 𝜔𝜔𝑟𝑟 , 𝐽𝐽,𝐵𝐵 and 𝑇𝑇𝐿𝐿 are the rotor electrical speed, the 
total moment of inertia of the rotor, friction coefficient 
and the load torque, respectively. To implement the 
motor model in Simulink, a 24-phase winding can be 
used, where, each winding is connected in series with a 
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speed-dependent voltage source 𝑒𝑒𝑥𝑥. The waveform of 𝑒𝑒𝑥𝑥 
may contain arbitrary harmonics and depends on the 
rotor position 𝜃𝜃𝑟𝑟. 

3 Control of modular twelve-phase PMSM using 
harmonic current injection strategy and MFPCSCs 

Various control methods exist for three-phase PMSMs, 
many of which can theoretically be extended to twelve-
phase PMSM motors. However, due to the increased 
phase count, computational complexity, microcontroller 
processing limitations, and the suboptimal performance 
of some methods in high-power applications, their 
practical implementation remains limited [14]. Among 
the available techniques, field-oriented control (FOC) in 
the dq reference frame is the most widely adopted 
method for twelve-phase PMSMs. This approach is 
essentially an extension of the three-phase PMSM 
control strategy. Several variations of FOC have been 
proposed in the literature for twelve-phase PMSMs. In 
[15], the reference values for the d- and q-axis current 
components are derived based on the sinusoidal nature 
of the back-EMF voltages. Ref. [15] employs a 
distributed vector control method, similar to [15], where 
each three-phase stator group is independently controlled 
in its own dq reference frame using PI controllers. To 
mitigate magnetic coupling effects between groups, 
decoupling voltage signals are injected into the current 
controller outputs. Ref. [16] presents a vector control 
strategy based on the VSD (Vector Space 
Decomposition) model. Here, the 12-phase currents are 
transformed into two subspaces: the dq plane (for 
fundamental torque production) and the harmonic 
subspace (z₁z₂). PI and PR controllers are then applied to 
suppress harmonic current components. Ref. [17] 
extends the dq-frame vector control approach to a dual 
twelve-phase PMSM, demonstrating its applicability in 
more complex multi-phase systems. 

Apart from the vector control method, model 
predictive control (MPC) is also employed for twelve-
phase PMSM drives. Increasing the number of phases 
significantly expands the number of available voltage 
vectors. For instance, in [18], only 24 effective voltage 
vectors are selected from 4,096 possible candidates to 
evaluate the cost function in the proposed finite-control-
set MPC (FCS-MPC) scheme. FCS-MPC utilizes the 
motor’s mathematical model to predict the control effort 
and then optimizes the cost function to minimize the 
error between the predicted and reference values [19-
20]. However, during motor operation, parameter 
variations—caused by factors such as temperature 
fluctuations and magnetic saturation—degrade the 
controller’s accuracy, leading to compromised 
performance in both transient and steady-state 
conditions. To address this issue, several solutions have 
been proposed. In [21], a model-independent control 
strategy is introduced, leveraging an ultra-local model to 

compensate for parameter variations, inverter 
nonlinearities, and mutual coupling effects. This 
approach incorporates parameter identification to 
estimate system disturbances. A model-free predictive 
current control (MFPCC) method for PMSM drives is 
presented in [22]. In [23], an MFPCC scheme based on a 
nonlinear disturbance observer (NDO) is proposed. 
Here, parameter variations are treated as disturbances, 
and the control strategy relies on disturbance estimation 
to maintain robustness. 

 Most conventional control methods rely on the motor 
model in the two-axis dq reference frame, necessitating 
the use of Park or Clarke transformations. However, in 
the modular drive structure of this study—where each 
phase's control system operates independently without 
knowledge of the other phases—these traditional 
methods are not applicable. To enhance the robustness 
of the PMSM drive system against disturbances and 
parameter variations, this study proposes a model-free 
predictive control (MFPC) method. The key innovation 
lies in the simultaneous current and speed control using 
a model-free approach, augmented by a nonlinear 
disturbance observer (NDO) to maintain robustness 
under motor parameter changes. By integrating these 
features and eliminating the PI speed controller, the 
proposed method improves reliability in tracking 
reference values within a defined transient period. The 
developed model-free predictive current and speed 
control (MFPCSC), combined with the NDO, is also 
applicable to non-sinusoidal PMSMs, effectively 
minimizing torque ripple and reducing acoustic noise. 
To further mitigate torque ripple caused by high-order 
harmonics in the phase back-EMF voltages, this study 
employs a harmonic current injection method (reference 
current shaping) in the 12-axis stationary reference 
frame. A brief explanation of this technique follows. 

3.1 Torque control using harmonic current injection 
method 

In the harmonic current injection method, harmonic 
currents are injected into each phase to compensate for 
the harmonics present in the back-EMF voltage. The 
amplitudes of these injected currents are adjusted such 
that the harmonic components of the torque are canceled 
out, leaving only a constant torque [14,25]. 

For the motor studied in this study, it is assumed that 
only the 1st, 3rd, 5th, and 7th harmonics are present in 
the back-EMF voltages. Thus, the back-EMF voltage of 
winding 𝑥𝑥 (𝑥𝑥 = 𝐴𝐴1,𝐴𝐴2,𝐵𝐵1,𝐵𝐵2, … , 𝐿𝐿2) can be expressed 
as follows: 

(5) 𝑒𝑒𝑥𝑥(𝑡𝑡) = 𝐸𝐸1 𝑠𝑠𝑠𝑠𝑠𝑠𝜔𝜔𝑟𝑟 𝑡𝑡 + 𝐸𝐸3 𝑠𝑠𝑠𝑠𝑠𝑠 3𝜔𝜔𝑟𝑟𝑡𝑡 +
𝐸𝐸5 𝑠𝑠𝑠𝑠𝑠𝑠 5𝜔𝜔𝑟𝑟𝑡𝑡 + 𝐸𝐸7 𝑠𝑠𝑠𝑠𝑠𝑠 7𝜔𝜔𝑟𝑟𝑡𝑡                     
(ℎ𝑒𝑒𝑒𝑒𝑒𝑒;  𝑥𝑥 = 𝐴𝐴1 𝑜𝑜𝑜𝑜 𝐴𝐴2) 
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Here 𝐸𝐸1 to 𝐸𝐸7 represent the harmonic amplitudes of the 
back-EMF voltages, which in this study are set to 1, 0.2, 
0.1, and 0.02 per unit, respectively. If the current 
injected into coil x is defined as follows: 

(6) 𝑖𝑖𝑥𝑥(𝑡𝑡) = 𝐼𝐼1 𝑠𝑠𝑠𝑠𝑠𝑠 𝜔𝜔𝑟𝑟 𝑡𝑡 + 𝐼𝐼5 𝑠𝑠𝑠𝑠𝑠𝑠 5𝜔𝜔𝑟𝑟𝑡𝑡 + 𝐼𝐼7 𝑠𝑠𝑠𝑠𝑠𝑠 7𝜔𝜔𝑟𝑟𝑡𝑡 

The air gap power of winding 𝑥𝑥 will only include even 
harmonics up to order 14th and will be as follows: 

(7) 𝑃𝑃𝑥𝑥(𝑡𝑡) = 𝑃𝑃0 + 𝑃𝑃2 𝑠𝑠𝑠𝑠𝑠𝑠 2𝜔𝜔𝑟𝑟 𝑡𝑡 + ⋯+ 𝑃𝑃14 𝑠𝑠𝑠𝑠𝑠𝑠 14𝜔𝜔𝑟𝑟𝑡𝑡 

It can be analytically demonstrated that in a PMSM 
with a phase number that is a multiple of 3, the air-gap 
power (or torque)—comprising the sum of contributions 
from all windings—contains only harmonic components 
of orders that are multiples of 6. For the motor under 
study in this study, by restricting the harmonic analysis 
to the 7th order, the instantaneous air-gap power 𝑃𝑃𝑒𝑒 is 
derived as follows: 

(8) 𝑃𝑃𝑒𝑒(𝑡𝑡) = 𝑃𝑃0 + 𝑃𝑃6 𝑠𝑠𝑠𝑠𝑠𝑠 6𝜔𝜔𝑟𝑟 𝑡𝑡 + 𝑃𝑃12 𝑠𝑠𝑠𝑠𝑠𝑠 12𝜔𝜔𝑟𝑟𝑡𝑡 

And the instantaneous electromagnetic torque can also 
be calculated as follows: 

(9) 𝑇𝑇𝑒𝑒(𝑡𝑡) =
𝑃𝑃𝑒𝑒(𝑡𝑡)
𝜔𝜔𝑟𝑟

= 𝑇𝑇0 + 𝑇𝑇6 𝑠𝑠𝑠𝑠𝑠𝑠 6𝜔𝜔𝑟𝑟 𝑡𝑡 + 𝑇𝑇12 𝑠𝑠𝑠𝑠𝑠𝑠 12𝜔𝜔𝑟𝑟𝑡𝑡 

where: 

(10) 𝑇𝑇0 =
3

2𝜔𝜔𝑟𝑟
[  𝐸𝐸1,𝐸𝐸5,𝐸𝐸7  ] 

(11) 𝑇𝑇6 =
3

2𝜔𝜔𝑟𝑟
[𝐼𝐼1(𝐸𝐸7 − 𝐸𝐸5) − 𝐼𝐼5𝐸𝐸1 + 𝐼𝐼7𝐸𝐸1] 

(12) 𝑇𝑇12 =
3

2𝜔𝜔𝑟𝑟
[−𝐼𝐼5𝐸𝐸7 − 𝐼𝐼7𝐸𝐸5] 

To determine the amplitude of current harmonics, the 
following matrix equation must be solved by equating by 
equating 𝑇𝑇0 to the reference torque 𝑇𝑇𝑒𝑒∗ (output of speed 
controller) and setting 𝑇𝑇6 and 𝑇𝑇12 to zero: 

(13) �
𝐸𝐸1 𝐸𝐸5 𝐸𝐸7 

𝐸𝐸7−𝐸𝐸5 −𝐸𝐸1 𝐸𝐸1 
0 −𝐸𝐸7 −𝐸𝐸5 

� × �
𝐼𝐼1
𝐼𝐼5
𝐼𝐼7
� =

2𝜔𝜔𝑟𝑟
3

�
𝑇𝑇𝑒𝑒∗
0
0
� 

As a result, the amplitudes of harmonic reference 
currents are determined as follows: 

(14) �
𝐼𝐼1∗
𝐼𝐼5∗
𝐼𝐼7∗
� = �

1.006
−0.0671
0.0134

�
2𝜔𝜔𝑟𝑟𝑇𝑇𝑒𝑒∗

3
 

Note, the reference value of the third harmonic current is 
set to zero because this harmonic does not contribute to 
torque generation. 

3.2 MFPCSC method based on ultra-local model  
An ultra-local model of a single-input, single-output 

system using only the system's input and output while 
disregarding mathematical model can be expressed as 
[23]. 

(15)  𝑦̇𝑦 = 𝛼𝛼𝛼𝛼 + 𝐹𝐹 

where, 𝑦𝑦 is output of the system, 𝑢𝑢 is input of the 
system, 𝐹𝐹 is sum of known and unknown disturbances of 
system as extended state, and 𝛼𝛼 is a scaling coefficient 
of the designed model. Considering 𝑦𝑦∗ as the reference 
output value of the system, 𝐹𝐹�  as the estimated value of 
𝐹𝐹, the control law of state feedback controller can be 
expressed as: 

(16) 𝑢𝑢 =
𝑦̇𝑦∗ − 𝐹𝐹� + 𝜉𝜉

𝛼𝛼
 

here ξ is the control law and can be the output of 
controller such as proportional-integral (PI). If extended 
state 𝐹𝐹 is estimated with high accuracy, so 𝐹𝐹�  ≅ 𝐹𝐹, from 
(15) and (16) it results 

(17) 𝑒̇𝑒 + 𝜉𝜉 = 0 

where 𝑒𝑒 = 𝑦𝑦∗ − 𝑦𝑦 represents the output tracking error. 
Assuming that 𝜉𝜉, the output of the proportional 
controller, is in the form 𝜉𝜉 = 𝑘𝑘𝑝𝑝𝑒𝑒, the control law of the 
closed-loop nonlinear system is described as follows: 

(18) 𝑢𝑢 =
𝑦̇𝑦∗ − 𝐹𝐹� + 𝑘𝑘𝑝𝑝𝑒𝑒

𝛼𝛼
 

𝑒̇𝑒 + 𝑘𝑘𝑝𝑝𝑒𝑒 = 0 

It is clear that the performance of controller depends on 
the proportional controller coefficient (𝑘𝑘𝑝𝑝) and the 
accuracy of the estimation. 

To develop the ultra-local mathematical model of the 
modular double-winding, twelve-phase PMSM in the 
stationary stator frame, the following steps are taken. By 
rewriting (1) and using (2) for a considered winding 
such as winding 𝐴𝐴1 of phase A, it results: 

(19) 𝑣𝑣𝐴𝐴1 = 𝑅𝑅𝑠𝑠𝑖𝑖𝐴𝐴1 +
𝑑𝑑
𝑑𝑑𝑑𝑑
𝜓𝜓𝐴𝐴1 + 𝑒𝑒𝐴𝐴1 

or 

(20) 
𝑣𝑣𝐴𝐴1 = 𝑅𝑅𝑠𝑠𝑖𝑖𝐴𝐴1 + 𝐿𝐿𝑠𝑠

𝑑𝑑𝑖𝑖𝐴𝐴1
𝑑𝑑𝑑𝑑

+
𝑑𝑑
𝑑𝑑𝑑𝑑

� 𝑀𝑀𝐴𝐴1𝑥𝑥𝑗𝑗𝑖𝑖𝑥𝑥𝑗𝑗
𝑥𝑥𝑗𝑗=𝐵𝐵1…𝑍𝑍2

+ 𝜔𝜔𝑟𝑟𝜓𝜓𝑃𝑃𝑃𝑃 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃𝑟𝑟) 
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It is observed that, in (20), the voltage of winding 𝐴𝐴1 
depends on the currents of other windings. However, 
given the modular nature of the power and control 
system, their values are not available, and the induced 
voltage due to the currents of other windings can be 
considered the unmodeled dynamics of the winding 𝐴𝐴1. 
Considering parameter variations, unknown 
disturbances, and unmodeled dynamics, the 
mathematical model of winding 𝐴𝐴1 can be expressed as 
follows: 

(21) 
𝑣𝑣𝐴𝐴1 = (𝑅𝑅𝑠𝑠 + 𝛥𝛥𝛥𝛥)𝑖𝑖𝐴𝐴1 + (𝐿𝐿𝑠𝑠 + 𝛥𝛥𝛥𝛥)

𝑑𝑑𝑖𝑖𝐴𝐴1
𝑑𝑑𝑑𝑑

+ 𝜔𝜔𝑟𝑟(𝜓𝜓𝑃𝑃𝑃𝑃 + 𝛥𝛥𝜓𝜓𝑃𝑃𝑃𝑃) 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃𝑟𝑟)
+ 𝑓𝑓𝐴𝐴1 

that, Δ𝑅𝑅, Δ𝐿𝐿, and 𝜓𝜓𝑃𝑃𝑃𝑃 represent the resistance, 
inductance and permanent magnet flux variations of 
each phase, and 𝑓𝑓𝐴𝐴1 indicates the unknown disturbances 
and unmodeled dynamics in phase 𝐴𝐴1. Equation (21) can 
be rewritten as follows: 

(22) 

𝑑𝑑𝑖𝑖𝐴𝐴1
𝑑𝑑𝑑𝑑

=
𝑣𝑣𝐴𝐴1
𝐿𝐿𝑠𝑠

+ �−
(𝑅𝑅𝑠𝑠 + 𝛥𝛥𝛥𝛥)𝑖𝑖𝐴𝐴1

𝐿𝐿𝑠𝑠
−
𝛥𝛥𝛥𝛥
𝐿𝐿𝑠𝑠
𝑑𝑑𝑖𝑖𝐴𝐴1
𝑑𝑑𝑑𝑑

−  
𝜔𝜔𝑟𝑟(𝜓𝜓𝑃𝑃𝑃𝑃 + 𝛥𝛥𝜓𝜓𝑃𝑃𝑃𝑃) 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃𝑟𝑟)

𝐿𝐿𝑠𝑠

−
𝑓𝑓𝐴𝐴1
𝐿𝐿𝑠𝑠
� 

If the currents of each of the 24 windings of the motor 
are considered the system outputs, the applied voltages 
to the motor windings are considered the system inputs, 
and the other terms are considered the sum of the known 
and unknown disturbances of the system. Based on (15), 
the ultra-local mathematical model for winding 𝐴𝐴1 
PMSM can be expressed as follows: 

(23) 
𝑑𝑑𝑖𝑖𝐴𝐴1
𝑑𝑑𝑑𝑑

= 𝛼𝛼𝑣𝑣𝐴𝐴1 + 𝐹𝐹𝐴𝐴1 

where 𝛼𝛼 is the controller coefficient equal to the inverse 
of phase inductance (𝛼𝛼 = 1/𝑳𝑳𝒔𝒔), and the sum of the 
disturbances for winding 𝑨𝑨𝟏𝟏 is as follows: 

(24) 

𝐹𝐹𝐴𝐴1 = −
(𝑅𝑅𝑠𝑠 + 𝛥𝛥𝛥𝛥)𝑖𝑖𝐴𝐴1

𝐿𝐿𝑠𝑠
−
𝛥𝛥𝛥𝛥
𝐿𝐿𝑠𝑠
𝑑𝑑𝑖𝑖𝐴𝐴1
𝑑𝑑𝑑𝑑

−
𝜔𝜔𝑟𝑟(𝜓𝜓𝑃𝑃𝑃𝑃 + 𝛥𝛥𝜓𝜓𝑃𝑃𝑃𝑃) 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃𝑟𝑟)

𝐿𝐿𝑠𝑠
−
𝑓𝑓𝐴𝐴1
𝐿𝐿𝑠𝑠

 

For other windings, the ultra-local mathematical model 
can also be presented in the same manner. In the next 
section, an ESO is designed for each winding to estimate 
the sum of the disturbances 𝐹𝐹𝐴𝐴1. 
 
 

3.3 Design of extended state observer (ESO)  
Based on the ultra-local model given by (23), a linear 

extended state observer can be designed, with the state 
variables estimating the values of 𝑖𝑖𝐴𝐴1 and 𝐹𝐹𝐴𝐴1. This 
observer can be designed using the feedback of the 
estimation error of the current 𝑖𝑖𝐴𝐴1 as follows [30, 29]: 

(25) �
𝑒𝑒 = 𝑥𝑥1 − 𝑖𝑖𝐴𝐴1
𝑥̇𝑥1 = 𝑥𝑥2 + 𝛼𝛼𝑣𝑣𝐴𝐴1 − 𝛽𝛽1 × 𝑒𝑒
𝑥̇𝑥2 = −𝛽𝛽2 × 𝑒𝑒

 

where 𝑥𝑥1 = 𝚤𝚤𝐴̂𝐴1 ،𝑥𝑥2 = 𝐹𝐹�𝐴𝐴1 are the state variables of the 
observer, those are the estimated values 𝑖𝑖𝐴𝐴1 and 𝐹𝐹𝐴𝐴1 
respectively. 𝛽𝛽1 and 𝛽𝛽2 are the feedback gains of the 
observer's error, which influence the estimation quality 
and must be appropriately determined. To design the 
observer and determine the appropriate values for 𝛽𝛽1 and 
𝛽𝛽1, the state-space representation of the linear ESO can 
be expressed as follows: 

(26) �
𝑥̇𝑥 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝑣𝑣𝐴𝐴1 + 𝐷𝐷(𝑦𝑦 − 𝑦𝑦�)
𝑦𝑦� = 𝐶𝐶𝐶𝐶  

that 𝒚𝒚� is the estimated output 𝑦𝑦, and the vector 𝑥𝑥 and 
observer matrices are as follows: 

(27) 
𝑥𝑥 = �

𝑥𝑥1
𝑥𝑥2� ,𝐴𝐴 = �0 1

0 0� ,𝐵𝐵 = �𝛼𝛼0� ,𝐶𝐶𝑇𝑇 = �10� ,𝐷𝐷

= �𝛽𝛽1𝛽𝛽2
� 

The characteristic equation of the ESO observer is 
expressed as follows: 

(28) |𝑠𝑠𝑠𝑠 − (𝐴𝐴 − 𝐷𝐷𝐷𝐷)| = 𝑠𝑠2 + 𝛽𝛽1𝑠𝑠 + 𝛽𝛽2 

For stability of the ESO, the roots of the (30) must be 
located in the left half of the complex plane. Hence, the 
following conditions must be met: 

(29) �
𝛽𝛽1 = 2𝜔𝜔0
𝛽𝛽2 = 𝜔𝜔0

2  

The bandwidth 𝝎𝝎𝟎𝟎 of the ESO determines the stability 
and dynamic performance of the observer. For PMSM 
drives, the current control loop (inner loop) typically 
requires a high bandwidth to meet dynamic response 
requirements. 

3.4 Current regulation using current ESOs  
The relationship between voltage and current for each 

winding of the motor follows a first-order ultra-local 
model such (26). Using the Euler discretization 
approximation, the voltage of motor winding 𝐴𝐴1 can be 
calculated as follows: 

(30) 𝑣𝑣𝐴𝐴1(𝑘𝑘) =
𝑖𝑖𝐴𝐴1(𝑘𝑘 + 1) − 𝑖𝑖𝐴𝐴1(𝑘𝑘)

𝛼𝛼𝑇𝑇𝑠𝑠
−
𝐹𝐹�𝐴𝐴1(𝑘𝑘)
𝛼𝛼
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where 𝐹𝐹𝐴𝐴1 is replaced by 𝐹𝐹�𝐴𝐴1, that is determined by the 
ESO. By substituting 𝑖𝑖𝐴𝐴1(𝑘𝑘 + 1) with the reference 
current of the phase A winding, i.e., 𝑖𝑖𝐴𝐴∗  determined by 
(15), the reference voltage value of the motor winding 
𝐴𝐴1 is obtained as follows: 

(31) 𝑣𝑣𝐴𝐴1
∗ (𝑘𝑘) =

𝑖𝑖𝐴𝐴∗(𝑘𝑘) − 𝑖𝑖𝐴𝐴1(𝑘𝑘)
𝛼𝛼𝑇𝑇𝑠𝑠

−
𝐹𝐹�𝐴𝐴1(𝑘𝑘)
𝛼𝛼

 

By modulating this voltage vector using fixed switching 
frequency modulation methods such as space vector 
modulation (SVM) or sinusoidal modulation, the 
switching signals for each H-bridge inverter shown in 
Fig. 4 are determined.  

3.5 Speed control using speed ESO 
In the continuation of the work, the speed control 

loop is implemented as model-free predictive control 
and it is augmented to proposed MFPCC method in 
previous section. The dynamic equation of the speed of 
PMSM from (4) can be rewritten as: 

(32) 
𝑑𝑑𝜔𝜔𝑚𝑚
𝑑𝑑𝑑𝑑

=
1
𝐽𝐽

(𝑇𝑇𝑒𝑒 − 𝐵𝐵𝜔𝜔𝑚𝑚 − 𝑇𝑇𝐿𝐿) 

Considering 𝜔𝜔𝑚𝑚 as the output and 𝑇𝑇𝑒𝑒 as the input of the 
model, (32) can be rewritten as same as (15) and (16) as 
follows: 

(33) 𝑑𝑑𝜔𝜔𝑚𝑚
𝑑𝑑𝑑𝑑

= 𝛽𝛽𝑇𝑇𝑒𝑒 + 𝐹𝐹𝑚𝑚 

(34) 𝐹𝐹𝑚𝑚 =
1
𝐽𝐽

(−𝐵𝐵𝜔𝜔𝑚𝑚 − 𝑇𝑇𝐿𝐿) 

where 𝐹𝐹𝑚𝑚 shows the total mechanical disturbances of the 
system and 𝛽𝛽 = 1 𝐽𝐽⁄  is the input gain. It is possible to 
repeat the process similar to (17) to estimate 𝐹𝐹�𝑚𝑚 where 
𝑥𝑥 = 𝜔𝜔𝑚𝑚 is the state variable of the mechanical part of 
the system. 

(35) 

ℎ̇𝑚𝑚 = −𝑙𝑙(𝜔𝜔𝑚𝑚)ℎ𝑚𝑚 − 𝑙𝑙(𝜔𝜔𝑚𝑚)�𝜆𝜆(𝜔𝜔𝑚𝑚) + 𝛽𝛽𝑖𝑖𝑞𝑞� 

𝐹𝐹�𝑚𝑚 = ℎ𝑚𝑚 + 𝜆𝜆(𝜔𝜔𝑚𝑚) 

𝜆𝜆(𝜔𝜔𝑚𝑚) = ℓ𝜔𝜔𝑚𝑚 

𝑙𝑙(𝜔𝜔𝑚𝑚) =
𝜕𝜕𝜕𝜕(𝜔𝜔𝑚𝑚)
𝜕𝜕𝜔𝜔𝑚𝑚

= ℓ 

Using Euler's approximation, (35) can be rewritten as 
follows: 

(36) 
𝜔𝜔𝑚𝑚(𝑘𝑘 + 1) −𝜔𝜔𝑚𝑚(𝑘𝑘)

𝑇𝑇𝑠𝑠
= 𝛽𝛽𝑇𝑇𝑒𝑒(𝑘𝑘) + 𝐹𝐹�𝑚𝑚(𝑘𝑘) 

Considering 𝜔𝜔𝑚𝑚(𝑘𝑘 + 1) = 𝜔𝜔𝑚𝑚∗ , the reference value of 
torque 𝑇𝑇𝑒𝑒  can be calculated as follows: 

(37) 𝑇𝑇𝑒𝑒∗ = 𝑇𝑇𝑒𝑒(𝑘𝑘 + 1) =
𝜔𝜔𝑚𝑚∗ − 𝜔𝜔𝑚𝑚(𝑘𝑘)

𝛽𝛽𝑇𝑇𝑠𝑠
−
𝐹𝐹�𝑚𝑚(𝑘𝑘)
𝛽𝛽

 

 
Fig. 5 shows the block diagram of a twelve-phase 
PMSM motor control system using a harmonic current 
injection strategy, with current and speed control 

implemented via ESO (Extended State Observer) 
observers. 

 

 
Fig 5.Block diagram MFPCSC method for the twelve-phase 

with  double windings using Extended Space Observers 

4 Fault-tolerant control in a modular twelve-phase 
PMSM drive 

Significant research has been conducted over the past 
two decades on fault-tolerant control for multi-phase 
PMSM motors with fewer than 12 phases, including 5-
phase and 6-phase asymmetric configurations [25-26]. 
However, limited studies have addressed 12-phase 
brushless permanent magnet motors (PMSM/BLDC). 
For instance, [27] proposes a fault-tolerant control 
strategy for a 12-phase PMSM motor in a flywheel 
application, treating the motor as four independent three-
phase groups (each modeled in the dq frame and 
powered by separate three-level inverters) to handle 
single open-phase faults. This approach was later 
extended in [28] to accommodate two-phase open-circuit 
faults across different three-phase groups.  

The proposed method in this work relies on balancing 
the second harmonic torque components of the motor 
windings under fault conditions. In healthy operation, 
these harmonic components cancel each other, resulting 
in a ripple-free instantaneous torque (assuming ideal 
sinusoidal back-EMF). However, when one or more 
phases are lost, this balance is disrupted, introducing 
torque oscillations at twice the rotor frequency. To 
restore equilibrium, the compensation strategy adjusts 
the current angles of the remaining healthy phases. For 
example, if the fundamental harmonic vectors of the 12 
phases are represented as in Fig. 6(a), their second 
harmonic torque components form a balanced system, as 
illustrated in Fig. 6(b). By dynamically modifying the 
phase angles of healthy windings, the sum of these 
harmonics can be driven back to zero, mitigating torque 
ripple under fault conditions. 
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(a) First order harmonic vectors of phases currents 

 
(b) Second order harmonic vectors of torques 

Fig 6.Diagram of current and second order harmonic vectors in 
the 12-phase PMSM 

 

4.1 One-phase open-circuit failure 
In the motor's healthy state, the second harmonic of 

torque can be analyzed by dividing the twelve windings 
(in one half) into four three-phase groups, as illustrated 
in Fig. 6(b). For instance, consider the three-phase group 
𝐴𝐴1𝐼𝐼1𝐸𝐸1, where the resultant second harmonic torque is 
zero under normal conditions. However, if winding 𝐴𝐴1 
becomes open-circuit, the remaining windings (𝐸𝐸1 and 
𝐼𝐼1) effectively form an unbalanced two-phase system. 
This imbalance generates a second harmonic torque 
component. To mitigate the resulting torque ripple, the 
proposed Fault-Tolerant Control (FTC) strategy 
compensates for the second harmonic torque, as depicted 
in Fig. 7. When an open-circuit fault occurs, the healthy 

phase currents are symmetrically adjusted in magnitude 
and phase to compensate for the lost phase. The key 
objective is to ensure that the vector sum of the second 
harmonic torques from the remaining windings cancels 
out. For example, in the case of the 𝐴𝐴1𝐼𝐼1𝐸𝐸1 group: 

• The vectors 𝐼𝐼1 and 𝐸𝐸1  can be shifted by 𝜃𝜃𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖 =
30𝑜𝑜 toward the lost winding 𝐴𝐴1, resulting in new 
positions 𝐼𝐼′1 and 𝐸𝐸′1. 

• Alternatively, other compensation schemes are 
possible, such as shifting only 𝐸𝐸1 by 60° or only 
𝐼𝐼1 by -60°, as long as the resultant second 
harmonic torque of the group sums to zero. 

Since the torque angle of each phase is determined 
by both the current angle and the back-EMF voltage 
angle (which is fixed), the required phase shift must be 
applied to the current angle of the compensating 
windings. Additionally, the current magnitudes of 𝐼𝐼′1 
and 𝐸𝐸′1 must be adjusted accordingly to ensure effective 
cancellation of the second harmonic torque. This 
approach ensures minimal torque ripple while 
maintaining motor performance under fault conditions. 

 

 
Fig 7.Diagram of the second-order harmonic torque for the 
proposed fault-tolerant control method under single-phase 

open-circuit failure 

As a general rule for compensation, when using 
only one healthy phase for compensation, the current 
angle of the preceding phase (in positive sequence) to 
the faulty phase should be shifted by 60°. There are 12 
possible cases of single-phase open-circuit faults within 
half of the stator circumference, as detailed in Table 1. If 
the fault occurs in the second winding of a phase (e.g., 
𝐴𝐴2), the same compensation method applies. 
Considering all single-winding fault possibilities across 
the entire motor, there are 24 possible cases of single-
winding faults. 
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Table 1. One-phase failure and corresponding compensator 

phases 

Shift angle in 
winding 

Compensator 
winding 

3-phase 
group 

Faulty 
winding 

+30𝑜𝑜 −30𝑜𝑜 𝐸𝐸1  𝐼𝐼1 𝐴𝐴1𝐼𝐼1𝐸𝐸1 𝐴𝐴1 

+60𝑜𝑜 𝐹𝐹1 𝐵𝐵1𝐽𝐽1𝐹𝐹1 𝐵𝐵1 

+60𝑜𝑜 𝐺𝐺1 𝐶𝐶1𝐾𝐾1𝐺𝐺1 𝐶𝐶1 

+60𝑜𝑜 𝐻𝐻1 𝐷𝐷1𝐿𝐿1𝐻𝐻1 𝐷𝐷1 

+60𝑜𝑜 𝐼𝐼1 𝐴𝐴1𝐼𝐼1𝐸𝐸1 𝐸𝐸1 

+60𝑜𝑜 𝐽𝐽1 𝐵𝐵1𝐽𝐽1𝐹𝐹1 𝐹𝐹1 

+60𝑜𝑜 𝐾𝐾1 𝐶𝐶1𝐾𝐾1𝐺𝐺1 𝐺𝐺1 

+60𝑜𝑜 𝐿𝐿1 𝐷𝐷1𝐿𝐿1𝐻𝐻1 𝐻𝐻1 

+60𝑜𝑜 𝐴𝐴1 𝐴𝐴1𝐼𝐼1𝐸𝐸1 𝐼𝐼1 

+60𝑜𝑜 𝐵𝐵1 𝐵𝐵1𝐽𝐽1𝐹𝐹1 𝐽𝐽1 

+60𝑜𝑜 𝐶𝐶1 𝐶𝐶1𝐾𝐾1𝐺𝐺1 𝐾𝐾1 

+60𝑜𝑜 𝐷𝐷1 𝐷𝐷1𝐿𝐿1𝐻𝐻1 𝐿𝐿1 

 

4.2 Two-phases open-circuit failure 
This failure can occur in two cases: (1) Two faulty 

phases in separate three-phase groups, such as 𝐴𝐴1 and 𝐵𝐵1
. (2) Both faulty phases in the same three-phase group, 
such as 𝐴𝐴1 and 𝐼𝐼1. In case (1) as shown in Fig. 8(a), 
when the faulty phases are in different groups, two three-
phase groups 𝐶𝐶1𝐾𝐾1𝐺𝐺1 and 𝐷𝐷1𝐿𝐿1𝐻𝐻1 remain balanced, 
producing no second-order harmonic torque. However, 
the other two groups 𝐴𝐴1𝐼𝐼1𝐸𝐸1 and 𝐵𝐵1𝐽𝐽1𝐹𝐹1 operate as 
unbalanced two-phase PMSMs, generating torque ripple 
with a second-order harmonic. The fault-tolerant control 
method mentioned in the previous section can be applied 
separately to both groups 𝐴𝐴1𝐸𝐸1𝐼𝐼1 and 𝐵𝐵1𝐽𝐽1𝐹𝐹1. 
Specifically, the vectors 𝐸𝐸1 and 𝐼𝐼1 can be shifted by 30° 
toward the faulty winding 𝐴𝐴1 and the vector 𝐹𝐹1 can be 
shifted by +60° so that it aligns opposite to 𝐽𝐽1.  

In case (2), that both faulty phases are in the same 
group, If the windings 𝐴𝐴1 and 𝐼𝐼1 were lost, the remaining 
phase 𝐸𝐸1 in the same group generates second-order 
harmonic torque ripple. The only solution is to use its 
opposite vector 𝐾𝐾2, located in the other half of the stator 
circumference. However, 𝐾𝐾2 belongs to the 𝐶𝐶2𝐾𝐾2𝐺𝐺2 
group and contributes to torque production. To mitigate 
torque ripple, the magnitude of 𝐾𝐾2 should be doubled, 
provided it does not exceed the current limit. Totally, 
there are 66 possible two-phase fault states in each half 
of the stator circumference. Some of these cases are 
summarized in Table 2. 

4.3 Three-phases open-circuit failure 
This failure can be occurred in three cases: (1) Three 

faulty phases to be in three separate three-phase groups 
such as 𝐴𝐴1,,𝐵𝐵1  and 𝐶𝐶1 or, case (2); 

 
(a) Two faulty phases (𝑨𝑨𝟏𝟏, 𝑩𝑩𝟏𝟏) belong to separate three-phase groups  

 
(b) Two faulty phases (𝑨𝑨𝟏𝟏, 𝑰𝑰𝟏𝟏) belong to one three-phase group  

Fig 8.Diagram of second-order harmonic torque for proposed  
fault-tolerant control  method in case of two-phase failure 

Table 2. Selected examples of two-phase failures along with 
their corresponding compensator phases (66 fault cases) 

Shift angle in windings Compensator 
windings 

Faulty 
windings 

+60𝑜𝑜 +30𝑜𝑜 −30𝑜𝑜 𝐹𝐹1 𝐸𝐸1  𝐼𝐼1 𝐴𝐴1 ,𝐵𝐵1 

+60𝑜𝑜 +30𝑜𝑜 −30𝑜𝑜 𝐺𝐺1 𝐸𝐸1  𝐼𝐼1 𝐴𝐴1 ,𝐶𝐶1 

+60𝑜𝑜 +30𝑜𝑜 −30𝑜𝑜 𝐻𝐻1 𝐸𝐸1  𝐼𝐼1 𝐴𝐴1 ,𝐷𝐷1 

0𝑜𝑜 +30𝑜𝑜 −30𝑜𝑜 𝐶𝐶2 𝐸𝐸1  𝐼𝐼1 𝐴𝐴1 ,𝐸𝐸1 

+60𝑜𝑜 +30𝑜𝑜 −30𝑜𝑜 𝐽𝐽1 𝐸𝐸1  𝐼𝐼1 𝐴𝐴1 ,𝐹𝐹1 

+60𝑜𝑜 +30𝑜𝑜 −30𝑜𝑜 𝐾𝐾1 𝐸𝐸1  𝐼𝐼1 𝐴𝐴1 ,𝐺𝐺1 

+60𝑜𝑜 +30𝑜𝑜 −30𝑜𝑜 𝐿𝐿1 𝐸𝐸1  𝐼𝐼1 𝐴𝐴1 ,𝐻𝐻1 

0𝑜𝑜 +30𝑜𝑜 −30𝑜𝑜 𝐾𝐾2 𝐸𝐸1  𝐼𝐼1 𝐴𝐴1 , 𝐼𝐼1 

+60𝑜𝑜 +30𝑜𝑜 −30𝑜𝑜 𝐵𝐵1 𝐸𝐸1  𝐼𝐼1 𝐴𝐴1 ,  𝐽𝐽1 

+60𝑜𝑜 +30𝑜𝑜 −30𝑜𝑜 𝐶𝐶1 𝐸𝐸1  𝐼𝐼1 𝐴𝐴1 ,𝐾𝐾1 

+60𝑜𝑜 +30𝑜𝑜 −30𝑜𝑜 𝐷𝐷1 𝐸𝐸1  𝐼𝐼1 𝐴𝐴1 , 𝐿𝐿1 

 
Two faulty phases to be in one three-phase group such 
𝐴𝐴1 and 𝐼𝐼1 and the third faulty phase such 𝐷𝐷1 to be in 
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another group, and case (3); three faulty phases such 
𝐴𝐴1, 𝐼𝐼1,𝐸𝐸1 are belonged in one three-phase group.  
 
In the first case, the proposed FTC for one-phase failure 
in section 4.1 can be employed for each faulty-phase. In 
the second case, the proposed FTC for one-phase and 
two-phases failure in sections 4.1 and 4.2 are used. For 
the third case, there is no need for compensation. There 
are 220 three-phase fault cases in each half of the stator 
circumference in general, that some of them are 
summarized in table 3. 

Table 3. Some examples of three-phase failure and 
corresponding compensator phases (220 fault cases) 

Shift angle in windings Compensator 
windings 

Faulty 
windings 

(−30𝑜𝑜, +30𝑜𝑜), (+60𝑜𝑜), (+60𝑜𝑜) (𝐼𝐼1,𝐸𝐸1),(𝐹𝐹1), (𝐺𝐺1) 𝐴𝐴1,𝐵𝐵1,𝐶𝐶1 

(+60𝑜𝑜), (+60𝑜𝑜), (+60𝑜𝑜) (𝐸𝐸1),(𝐺𝐺1), (𝐻𝐻1) 𝐴𝐴1,𝐶𝐶1,𝐷𝐷1 

(0𝑜𝑜), (+60𝑜𝑜) (𝐾𝐾2), (𝐻𝐻1) 𝐴𝐴1, 𝐼𝐼1,𝐷𝐷1 

(0𝑜𝑜), (+60𝑜𝑜) (𝐶𝐶2), (𝐻𝐻1) 𝐴𝐴1,𝐸𝐸1,𝐷𝐷1 

No need for compensation − 𝐴𝐴1, 𝐼𝐼1,𝐸𝐸1 
No need for compensation − 𝐵𝐵1, 𝐽𝐽1,𝐹𝐹1 

No need for compensation − 𝐶𝐶1,𝐾𝐾1,𝐺𝐺1 

No need for compensation − 𝐷𝐷1, 𝐿𝐿1,𝐻𝐻1 

 

4.4 Fault in four or more phases 
This failure can occur in four cases: 
• Case 1: Four faulty phases are distributed 

across separate three-phase groups, such as 
𝐴𝐴1,,𝐵𝐵1,𝐶𝐶1 and 𝐷𝐷1. 

• Case 2: Three faulty phases belong to one 
three-phase group (e.g., 𝐴𝐴1, 𝐼𝐼1 and 𝐸𝐸1), while 
the fourth faulty phase (e.g., 𝐷𝐷1) is in another 
group. 

• Case 3: Two faulty phases (e.g., 𝐴𝐴1, 𝐼𝐼1) are in 
one three-phase group, and the other two faulty 
phases (e.g., 𝐵𝐵1,𝐶𝐶1 to) are in different groups. 

• Case 4: Two faulty phases (e.g., 𝐴𝐴1, 𝐼𝐼1) are in 
one three-phase group, and another two faulty 
phases (e.g., 𝐵𝐵1, 𝐽𝐽1) are in a different group. 

For compensation in case 1, the proposed Fault-
Tolerant Control (FTC) for one-phase failure (Section 
4.1) can be applied separately to each faulty phase, 
following Table 1. In case 2, for the three faulty phases 
in one group, no compensation is needed. For the 
remaining faulty phase, the FTC from Section 4.1 is 
applied. In case 3, for the two faulty phases in the same 
group, the FTC from Section 4.2 is used. For the other 
two faulty phases, the FTC from Section 4.1 is applied, 
and for case 4, for both pairs of faulty phases in different 
groups, the FTC from Section 4.2 is implemented. In 
general, there are 495 possible four-phase fault 

combinations in each half of the stator circumference, 
some of which are summarized in Table 4.  

4.5 Fault in more 5 phases 
For failures involving five or more phases, the methods 

described in the previous sections (4.1–4.3) can be 
applied, considering the distribution of faulty phases 
across the four three-phase groups. 

Table 4. Some examples of four-phase failure and 
corresponding compensator phases (495 fault cases) 

Shift angle in windings Compensator 
windings 

Faulty 
windings 

(+60𝑜𝑜), (+60𝑜𝑜), (+60𝑜𝑜), 
(+60𝑜𝑜) 

(𝐸𝐸1), (𝐹𝐹1), (𝐺𝐺1), 
(𝐻𝐻1) 

𝐴𝐴1,𝐵𝐵1,𝐶𝐶1,𝐷𝐷1 

(+60𝑜𝑜) (𝐻𝐻1) 𝐴𝐴1, 𝐼𝐼1,𝐸𝐸1,𝐷𝐷1 

(0𝑜𝑜), (+60𝑜𝑜), (+60𝑜𝑜) (𝐾𝐾2),(𝐺𝐺1), (𝐻𝐻1) 𝐴𝐴1, 𝐼𝐼1,𝐶𝐶1,𝐷𝐷1 

(0𝑜𝑜), (0𝑜𝑜) (𝐾𝐾2),(𝐿𝐿2) 𝐴𝐴1, 𝐼𝐼1,𝐵𝐵1, 𝐽𝐽1 

5 Simulation results 

In this section, for a twelve-phase, 10-poles PMSM 
with rated specification of 200 kW, 2000 N.m, 400 V, 
320 rpm, 𝑅𝑅𝑠𝑠 = 30 𝑚𝑚𝑚𝑚, 𝐿𝐿𝑠𝑠 = 825 𝑚𝑚𝑚𝑚, 𝐽𝐽 = 0.3 𝑘𝑘𝑘𝑘.𝑚𝑚2, 
𝜓𝜓𝑃𝑃𝑃𝑃 = 1.5 𝑊𝑊𝑊𝑊, 𝐾𝐾𝑒𝑒 = 1.1 𝑉𝑉/(𝑟𝑟𝑟𝑟𝑟𝑟

sec
) is considered. The motor 

behavior is simulated using the harmonic current 
injection method with three current regulators: PI, 
hysteresis, and ESO-based. Figures 9 to 11 present the 
dynamic response of the twelve-phase PMSM drive, 
including the reference and actual speed, 
electromagnetic torque, and reference/actual phase 
currents for each regulator. In these simulations, the two 
windings of each phase are connected in series and 
powered by a single-phase H-bridge inverter. 

The motor's non-sinusoidal back-EMF waveform 
introduces harmonics into the reference current. 
Simulation results demonstrate that all three regulators—
PI, PR, and ESO—deliver effective current tracking 
performance. However, the ESO regulator outperforms 
the others, yielding the lowest torque ripple. 

A detailed comparison of the regulators' performance 
is provided in Table 5, which summarizes the peak-to-
peak current ripple and torque ripple for each controller. 
The data confirms that while all three achieve 
satisfactory current regulation, the ESO's advanced 
harmonic compensation capability results in 
significantly smoother torque output. 
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Fig 9.Dynamic response of 12-phase PMSM drive using PI 

current regulators 

 

 
Fig 10. Dynamic response of 12-phase PMSM drive using 

hysteresis current regulators 

 

 
Fig 11. Dynamic response of 12-phase PMSM drive using 

ESO-based controllers 

Table 5. Comparison of various current regulators on torque 
ripple 

Current regulator Torque ripple 
(N.m) Current ripple (A) 

PI 240 12 
Hysteresis with band 1 A 60 3 

MFPCSC+NDOs 24 1.2 
 
To simulate the performance of the single-phase fault 

tolerant control system, it is assumed that the winding 𝐴𝐴1 
of the phase 𝐴𝐴 is lost at time 𝑡𝑡 = 0.65 𝑠𝑠𝑠𝑠𝑠𝑠. Fig. 12 shows 
the simulation of the system performance. To observe 
the disturbance in the generated torque, it is assumed 
that the fault-tolerant control (FTC) algorithm is 
activated with 0.2 𝑠𝑠𝑠𝑠𝑠𝑠 delay at time 𝑡𝑡 = 0.85 𝑠𝑠𝑠𝑠𝑠𝑠, and 
on this way, the angle of the two windings 𝐸𝐸1 and  𝐼𝐼1 are 
shifted by +30𝑜𝑜 and −30𝑜𝑜 respectively according to 
Table 1. The magnitude of current is determined via 
speed controller, that has risen after compensation from 
81 A to 123 A. The motor torque fluctuates slightly due 
to the large number of healthy phases in the motor. 
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Fig 12. Dynamic response of proposed FTC under one-phase 

failure (𝑨𝑨𝟏𝟏) 

Fig. 13 shows the simulation of the system 
performance under the condition of a fault in two phases. 
Two windings 𝐴𝐴1 and 𝐵𝐵1 are lost at time 𝑡𝑡 = 0.65 𝑠𝑠𝑠𝑠𝑠𝑠 
and to reduce torque ripple, according to row 1 of table 
2, the current angle of the three windings (𝐸𝐸1,𝐹𝐹1, 𝐼𝐼1) is 
changed by (30𝑜𝑜, +60𝑜𝑜,−30𝑜𝑜). The current magnitude 
is also increased almost 50% via command of speed 
controller. When a fault occurs, the torque undergoes a 
slight fluctuation, and after applying the fault-tolerant 
control method at time 0.65 𝑠𝑠𝑠𝑠𝑠𝑠, the second-order 
harmonic of torque ripple disappeared. 

 
Fig 13. Dynamic response of proposed FTC under two-phases 

failure (𝑨𝑨𝟏𝟏,𝑩𝑩𝟏𝟏) 

Fig. 14 shows the simulation of the system 
performance under a load torque of 6000 N.m under 
three-phase on-circuit failure. The three windings 
(𝐴𝐴1,𝐵𝐵1,𝐶𝐶1) are lost at time 𝑡𝑡 = 0.65 𝑠𝑠𝑠𝑠𝑠𝑠. When a fault 
occurs, the torque undergoes a severe fluctuation, and 
even the speed drops from rpm 316 to rpm 260. To 
compensate the torque ripple, according to row 1 of table 
3, the current angle of the four windings 
(𝐼𝐼1,𝐸𝐸1,𝐹𝐹1,𝐾𝐾1) are changed by 
(−30𝑜𝑜, +30𝑜𝑜, +60𝑜𝑜,−60𝑜𝑜). After applying the FTC 
method at time 0.85 𝑠𝑠𝑠𝑠𝑠𝑠, the torque and speed return to 
their previous state. The magnitude of the currents is 
increased almost 50% and reaches from 80 A to 126 A.  

 

 
Fig 14. Dynamic response of proposed FTC under three-phases 

failure (𝑨𝑨𝟏𝟏,𝑩𝑩𝟏𝟏,𝑪𝑪𝟏𝟏) 

 Fig. 15 also shows the dynamic performance of the 
proposed FTC while four-phase open-circuit fault 
occurs. under a constant load torque of 6000 N.m, four 
windings (𝐴𝐴1,𝐵𝐵1,𝐶𝐶1,𝐷𝐷1) are lost at time 𝑡𝑡 = 0.65 𝑠𝑠𝑠𝑠𝑠𝑠. 
After failure, as shown, the torque decreases sharply and 
the speed also drops significantly and is going to be 
unstable. To prevent the instability of the drive, FTC is 
applied at time 0.85 𝑠𝑠𝑠𝑠𝑠𝑠 and the current angle of the four 
windings (𝐼𝐼1,𝐸𝐸1,𝐺𝐺1,𝐻𝐻1) are changed by 
(−30𝑜𝑜, +30𝑜𝑜, +60𝑜𝑜, +60𝑜𝑜) as mentioned in table 4. The 
magnitude of the healthy currents is increased almost 
50% and reaches from 80 A to 126 A. 
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Fig 15.Dynamic response of proposed FTC under four-phases 

failure (𝑨𝑨𝟏𝟏,𝑩𝑩𝟏𝟏,𝑪𝑪𝟏𝟏,𝑫𝑫𝟏𝟏) 

6 Conclusion 

This paper investigates the control of a modular 
twelve-phase non-sinusoidal PMSM with double stator 
windings. Given the independent control of each phase, 
the motor is modeled in a 12-axis stationary reference 
frame. To enhance motor performance and mitigate 
torque ripple induced by back-EMF harmonics, a 
harmonic current injection method is implemented. For 
accurate tracking of harmonic reference currents, a 
model-free predictive control strategy is employed, 
utilizing current and speed extended state observers 
(ESOs). Under normal operating conditions, the 
proposed method ensures robust dynamic performance 
in the modular drive, requiring only prior knowledge of 
the back-EMF harmonic content. The drive’s 
performance is further analyzed under various fault 
scenarios, with a fault-tolerant control (FTC) strategy 
proposed for each case. This strategy focuses on 
balancing the second-order harmonic torque in the 
remaining windings. Notably, while the proposed FTC 
effectively eliminates the second-order torque harmonic 
arising from the fundamental components of current and 
back-EMF, neither this method nor existing approaches 

can fully suppress higher-order torque harmonics caused 
by current and back-EMF harmonics. An additional 
critical consideration is that the loss of one or more 
windings reduces the motor’s torque capacity. Under a 
constant load torque exceeding the motor’s maximum 
producible torque (determined by the remaining phases’ 
current limits), instability occurs. However, if the load 
torque follows a propeller-type characteristic (e.g., 
proportional to the square of speed), the motor can 
continue operating at a reduced speed, as the output 
torque adjusts to match the load torque. Simulation 
results validate the effectiveness of the proposed 
modeling and control methods for this modular motor 
drive. 
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